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Abstract-This paper presents an analysis of the simultaneous heat transfer by forced convection, radiation 
and conduction in the entrance region of an internally finned circular tube. The governing equations of 
momentum, energy and radiative transfer are solved numerically using a control volume based approach. 
Under the idealization of a gray gas, the radiative contribution in the medium is modeled by an approximate 
differential method, the first-order spherical harmonics (P,) approximation. This route provides an 
additional partial differential equation of elliptic type in the system of convection-diffusion equations. 
Adoption of this differential formulation is advantageous from a computational point of view, because it 
is fully compatible with the SIMPLER code. Computed results for the distorted velocity profiles in the 
reduced cross-section of the tube provide the frictional losses due to the addition of longitudinal fins. 
Furthermore, heat transfer au~entation in the thermal entrance region of the finned tube is represented 
by the mean bulk temperature in terms of the descriptive geometric, hydrodynamic, thermal and radiative 

parameters. 

INTROOUCTION 

THE AUGMENTATION of the heat transfer performance 
of circular tubes by longitudinal internal fins has 

found wide use in compact heat exchangers due to the 
additional surface area provided by the fins. In this 
regard, an extensive review of heat transfer enhance- 
ment techniques has been presented by Bergles [l]* 
wherein various internal fin arrangements are 
described in detail. 

Previous theoretical and experimental investiga- 
tions of laminar flow and heat transfer in internally 
finned tubes have dealt almost exclusively with the 
hydrodynamically and the~ally deveIoped situation. 
In these studies, the thermal conductivity of the tube 
wall and the longitudinal fins has been assumed to be 
sufficiently high so that the fins remain at a uniform 
temperature approximately. Furthermore, in these 
studies the fin thickness in the array has been usually 
considered negligible in comparison with the interfin 
spacing. Accordingly, the corresponding numerical 
results have been reported in terms of two asymptotic 
parameters : the friction factor and the fully developed 
Nusselt number, both expressed as a function of the 
fin height and the number of fins in the array. 

More recently, it has been realized by different 
researchers that the complex interaction of fluid flow 
and heat transfer in internally finned tubes of compact 
heat exchangers necessitates to produce additional 
calculations in the developing region. Obviously, this 
was necessary in order to complement the information 
already avaitable for the fully developed region. In 
view of this limitation, Rustum and Soliman [2] con- 
ducted a numerical analysis of the fully developed 
laminar flow and developing temperature in longi- 
tudinally finned tubes. These authors used standard 
finite-difference procedures for their calculations. On 
the other hand, Prakash and Liu [3] and Choudhary 
and Patankar [4] examined the situation of simul- 
taneously developing Auid flow and heat transfer in a 
tube with longitudinally internal fins. In these two 
independent publications [3, 41, the applicable con- 
servation equations were solved numerically utilizing 
a control volume based discretization in conjunction 
with the SIMPLER code. 

Conversely, heat transfer by simultaneous con- 
vective and radiative transfer in gas flows operating 
at high temperature and high heat fluxes has become 
increasingly important in the area of high temperature 
heat exchangers. The available resuits have been sum- 
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NOMENCLATURE 

A, dimensionless flow area 

‘.,I specific heat at constant pressure 
[J kg-- ’ Km’] 

f friction factor, equation (7) 
G total irradiation [W m ‘1 
G* dimensionless total irradiation, 

equation (6) 
H dimensionless fin height, k/r,, 

Ir fin height [m] 
I intensity of radiation [W mm’ sr ‘1 

Ih intensity of black body radiation 

[W mm ‘sr~ ‘1 

K;, total volumetric absorption coefficient 

]m ‘I 
k thermal conductivity [W m ’ K ‘1 
riz mass flow rate [kg s ‘1 
N radiationconduction parameter, 

equation (6) 
NF number of fins 
Pr Prandtl number 

P pressure [N m ‘1 

L-, 
position vector [m] 
total heat transfer, equation (I 0) [W] 

Q, ideal heat transfer [W] 

qK radiation flux vector [W m ‘1 
Rr Reynolds number for finned tube, 

equation (6) 
Rr, Reynolds number for smooth tube, 

equation (14) 
I radial coordinate [m] 

I’0 pipe radius [m] 

T absolute temperature [K] 

r,,, reference temperature, T,,, = T,, [K] 

T, mean bulk temperature [K] 
T, entrance temperature [K] 

TX% wall temperature [K] 
t dimensionless temperature, equation (6) 

U dimensionless velocity, equation (6) 
c dimensionless mean velocity 

2.I velocity [m s ‘1 

> 
mean velocity [m s ‘1 
dimensionless axial coordinate, 

equation (6) 
%+ dimensionless axial coordinate, 

equation (I 4) 

- axial coordinate [ml. 

Greek symbols 
s( half the angle between the sides of adjacent 

fins 
half the angle subtended by one fin 

5 extinction coefficient [m ‘1 

4 dimensionless radial coordinate, 

equation (6) 
0 angular coordinate 
1’ kinematic viscosity [m’s ‘1 

(, density [kg mm ‘1 
fl Stefdn-Roltzmann constant [W m ’ K “1 

7 optical thickness, equation (6) 
(1) solid angle 

n heat transfer efficiency. equation (12). 

marized and discussed recently by Howell [5] in a 
review paper and by Mori et al. [6] in a monograph. 
In these applications, unless the contribution of radi- 

ation is very weak or very strong, momentum, energy 
and radiative transport equations must be solved 
simultaneously in order to determine local temper- 
atures and local heat fluxes in the participating 

gas medium. The rigorous formulation of the energy 
equation describing laminar forced convection of a 
gas that emits and absorbs radiation in a plain tube 

involves a non-linear integro-partial differential equa- 
tion [5]. In fact, it is also well known that the numeri- 
cal solution of this intricate equation is quite involved 
and requires large amounts of computing time and 
storage. In this regard. in order to carry out the com- 
putations it is usually necessary to implement an iter- 
ative approach in which the integral terms and the 
differential terms of the above-cited energy equation 
are solved consecutively [7-91. Alternatively, the 
approximate differential methods documented by 
Ozisik [IO] seek to replace the highly complex energy 
equation and the radiative transfer equation (RTE) 
by a system of coupled partial differential equations 

that depend on both temperature and irradiation. A5 

a result, the numerical solution of this transformed 
system seems to be easier to obtain than the original 
integro-partial differential equation. In this sense. the 

first moment method and the P,-approximation of the 
spherical harmonics are equivalent procedures that 
accomplish this goal [IO]. At this stage, it should be 
mentioned that this particular methodology has been 
successfully employed in ref. [I I] for the investigation 
of a thermally developing radiative<onvective gas 
flow restricted to fully developed velocity. The 

numerical solution of the transformed system of ordi- 
nary differential equations of first order was readily 
obtained in ref. [I I] via a novel combination of the 
method of lines, control volume discretization and a 
Runge-Kutta algorithm. 

Although a number of analyses dealing with com- 
bined problems of forced convection and radiative 
transfer have been performed under the assumption 
that a fully developed temperature prevails, this ideal- 
ization may provide erroneous thermal results. In this 
respect, two publications one by Kurosaki [12] and 
the other by Chawla and Chan [I 31 have tacitly dem- 
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onstrated that the axial variation of the total Nusselt 

number possesses a concave shape (passing through 

a minimum), rather than gradually approach an 
asymptotic value characteristic of pure forced con- 

vection tube flows. 
In light of the foregoing, the primary objective of 

this paper is to explore the combined enhancing effects 
of participating thermal radiation on laminar forced 

convection of gas flows through internally longi- 
tudinal finned tubes. An exhaustive literature review 
on the subject of combined mechanisms of heat trans- 

mission reflects that this kind of problem has not been 
investigated so far. However, the question of forced 

convection in laminar duct flows under the influence 
of surface radiative exchange has been addressed 

recently by Torikoshi et al. [ 141 and Chan and Kumar 
[15]. For concreteness, the present analysis focused 
on a general situation wherein the gas temperature 
develops in a longitudinal finned tube, and the velocity 

is taken as fully developed. The computed velocity, of 
course, depends on the fin height and the specific 
number of fins deployed in the tube cross-section. 
Hence, this distorted velocity profile is considered as 

an input for the governing equation of energy con- 
servation. 

Turning attention to the radiative analysis, as a 
first-order approximation, the medium is assumed as 

a gray gas, capable of emitting and absorbing radiant 
energy. Furthermore, the inner tube surface is con- 
sidered black, whereas the fins are relatively thick and 
are equally distributed in the cross-section of the tube. 
The applicable RTE, based on the Pi-approximation 

is coupled with the SIMPLER code which is used to 
solve the set of conservation equations numerically. 
Computed results are presented at the end of the paper 
for the axial variation of the mean bulk temperatures 

as a function of the controlling parameters describing 
the combined heat exchange process. These results 
will be useful to the design engineer for predicting the 
level of heat transfer augmentation (due to the action 
of combined mechanisms and a fixed number of fins) 
in the thermal entrance region of the tube. In addition 
to this, the results also provide parallel hydrodynamic 

data associated to the increase of pressure losses due 
to finning. 

DIFFERENTIAL FORMULATION 

The analysis is referred to the cross-section of the 
internally finned tube shown in Fig. 1. By virtue of 
the symmetries, it is only necessary to analyze the flow 
and heat transfer processes in the sector that spans 
between the tube centerline, B = O”, the tube wall, and 
the angle 0 = cc+l. In other words, the integration 
domain corresponds to a sector constructed between 
any two consecutive fins and the wall. Furthermore, 
the tube wall and the array of straight fins were sup- 
posed to be of high thermal conductivity, so that both 
would assume a uniform temperature over the cross- 
section of the tube. 

FIG. 1. Cross-section of the internally finned tube. 

For the situation of fully developed laminar flow in 

the finned tube, the equations of conservation for 
a radiatively participating gas may be written as 
follows : 

momentum 

energy 

1uat la ___=~~ 
2udz qarl ( > 

q”’ +4&(G*--l’)+J$$; (2) 
all 

radiative transfer 

__ - 3t2(G* - t*) (3) 

where the step-by-step derivation of equations (2) and 
(3) is given in the Appendix. 

To complete the formulation of the foregoing prob- 

lem, the hydrodynamic boundary conditions applied 

to equation (1) are: U = 1 at the entrance, U = 0 on 
the solid walls, aU/ija0 = 0 on the symmetry lines, and 
dCJ/aq = 0 at the centerline of the tube. The thermal 
boundary conditions imposed on equation (2) are: 

t = t, at the entrance, t = 1 at the solid walls 
(TTSf = r,), c?t/d0 = 0 on the symmetry lines, and 
dt/a’n = 0 at the centerline of the tube. Moreover, 

equation (3) was solved subject to the boundry con- 
ditions controlling the dimensionless irradiation G* 
at the solid black walls (including the array of fins), 
namely 

dG* 3 
_= 
dn 

- 2 r(G* - t4) at the solid walls (4) 

aG* 
p=O 
an 

on the symmetry lines (5) 

where d/an designates the normal derivative. 
The preceding set of equations has been formulated 

with the following dimensionless variables and 
descriptive parameters : 
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where the symbols are defined in the Nomenclature. 
Additionally, the foregoing formulation is restricted 

to uniform fluid properties, where the influence 
of viscous dissipation, axial conduction and axial 
radiation in the gas domain have been considered 

negligible. 

HYDRODYNAMIC AND THERMAL 

PARAMETERS 

The hydrodynamic aspects of the combined prob- 
lem defined in the preceding section will be analyzed 

first. Hence, according to Soliman and Feingold [ 161, 
the pressure drop due to internal finning, may be 
conveniently presented through the value off Re 

where A,- is the dimensionless flow area given by the 
relation 

A, = n-(NF)P(2- H)H. (8) 

Correspondingly, this same approach was used in the 
present paper for correlating the computed friction 
factor of internally finned tubes. In addition, it also 
serves to provide a basis of comparison with smooth 
(finless) tubes, retaining the same numerical values of 
the tube radius r,,, the kinematic viscosity of the fluid 

v and the mass flow rate ti. 
Secondly, for the heat transfer calculations, the 

thermal quantity of paramount interest is the mean 
bulk temperature distribution, which is defined as 

J UdA, 
A, 

where the integration was performed over the dimen- 
sionless flow area A, also. By virtue of this definition, 
the total heat transfer QT in a finned tube of length L 
carrying a high temperature gas flow may be easily 
obtained from an overall energy balance between any 
two consecutive stations z = 0 (the entrance) and L 
(any downstream station), i.e. 

Qr = tic,,( T,,,_ - T,). (10) 

Likewise, upon introduction of an ideal heat transfer 
Q, between z = 0 (the entrance) and co (an axial 
station placed far away from the entrance) 

Q, = hc,(Tw-T,) (11) 

the bulk temperature ratio TbL/Tref may be associated 
with the heat transfer efficiency 0. In ratio form, this 
efficiency simply becomes 

*#‘. 
I 

(12) 

Consequently, combining equations (lo)-(12) yields 
the efficiency-temperature relation 

rJ = “I-‘;’ 
z 

(13) 

which in essence serves to associate the dimensionless 
mean bulk temperature t,, (at a certain station 2 = L) 
with the total heat transferred up to that station in 

the finned tube, QT. 
To visualize the enhancement effect caused by inter- 

nal finning, the inside tube diameter, rather than the 
equivalent hydraulic diameter, is used as the charac- 

teristic dimension in the axial coordinate Z+. Accord- 
ingly, this dimensionless quantity Z+ computed by 

the relation 

Re Z+ _ = ~_ 
Re, Z 

(14) 

is adopted here for presenting the set of hydrodynamic 
and thermal results. 

COMPUTATIONAL PROCEDURE 

The computational task consists of the solution of 

equations (l)-(6), which eventually will provide the 
velocity, temperature and heat flux fields in the con- 

vective-radiative medium. Accordingly, the system of 

partial differential equations was solved numerically 
by the control volume procedure described by 
Patankar [17], in conjunction with the SIMPLER 
code [ 181. 

Alternatively, for the contribution of the radiatively 

participating gas, the two-dimensional RTE is 

modeled by an approximate differential method. In 
this work, the first-order spherical harmonics (P,- 

approximation) has been employed. It supplies an 
additional elliptic equation of diffusion-convection 
type, namely equation (Al I), which is derived in the 
Appendix. Thus, the discretization introduced to 
obtain a finite-difference form of the RTE employs 

the same control volumes utilized for the conservation 
equations of momentum and energy. Correspon- 
dingly, the special feature of this formulation/ 
computational approach is that the full set of con- 
servation equations are of the general diffusion-con- 
vection form, namely 

which is fully compatible with the SIMPLER code. 
The terms Fs and S, in equation (I 5) are the diffusion 
coefficient and source term, respectively. 

Once the control volume discretization is com- 



Table 1. Comparison of the friction factor, j’ Re He found that the maximum difference between the 

NF=4 NF=8 NF= I6 heat fluxes using the exact data and the P,-results was 

H (1) (2) (1) (2) (I) (2) at most 10%. According to ref. [20], the discrepancy 
was not expected to be critical when radiation is 

0.5 41.89 40.84 89.15 82.54 182.96 169.26 coupled with other modes of heat transfer. 
0.8 80. I 1 82.54 221.88 215.44 877.53 868.70 In light of the foregoing discussion, the math- 

(I) Present work. ematical formulation of the problem under study here 

(2) Soliman and F&gold [16]. relies on the P,-approximation. Additionally, the 
solution of equations (l)-(6) was carried out numeri- 
cally using control volumes, the SIMPLER code and 

pleted, the procedure for solving the corres- the mesh described in the preceding paragraphs. 
ponding set of algebraic equations relies on the 
common practice of solving them by a standard line- 
by-line method [l7]. This method involves solving 

RESULTS AND DISCUSSION 

simultaneously for all the variables along one grid An examination of the dimensionless set of con- 
line, which of course may be accomplished by an servation equations reveals the presence of six pre- 
efficient algorithm. In this context, the line-by-line scribable parameters : (1) the number of fins NF, (2) 
scheme was supplemented by a standard block-cor- the fin angle 2/Y, (3) the dimensionless fin height r”i, 
rection procedure which employs the concept of addi- (4) the entrance-to-wall temperature ratio fe, (5) the 
tive corrections generalized by Settari and Aziz [l9]. optical thickness 7 and (6) the radiation~onduction 
Furthermore, at this stage it should be emphasized parameter N. In order to minimize the number of 
that since the energy and radiative transfer equations figures in the presentation of results the calculations 
are interlinked, both were solved iteratively at each correspond to p = 3”, H = 0.5 and t, = 0.5, respec- 
axial station Z in the thermal entrance region. tively. In light of this, the numerical computations 

The computations were performed with uniform were carried out for three different fin arrangements : 
spacings on a 22 x 22 grid in the q-0 coordinates util- NF = 0,3 and 5. The radiation parameters considered 
ized here. In addition, a non-uniform axial step was were z and N, their numerical values ranging as 
used for the thermal calculations starting from a small 0 < z < 5 and 0 < N < 10, respectively. This choice 
value of Z = 10. ’ at the entrance, and subsequently of parameters covers a spectrum of possible com- 
adjusted gradually in the downstream region of the binations of high temperature gas flows under laminar 
tube. With regards to the grid size, preliminary runs motion. 
on grids that were finer indicated that the results pre- The development of the temperature profiles along 
sented are accurate to at feast I % in the primitive and the length of the longitudinal finned tubes may be 
overall variables at a station close to the entrance conveniently studied by means of the axial variation 
Z = IO- ‘. As expected, the accuracy improves sig- of the mean bulk temperature fb. In fact, as stated 
nificantly at stations further downstream in the tube. earlier. the bulk temperature at any axial location is 
As a verification of the computational procedure, a better indication of the thermal development than 
numerical results were obtained initially for a con- the Nusselt number because by virtue of equation (13) 
ventional fluid flow through finned tubes without par- it also represents the total heat removal Q,. from the 
ticipating radiation. For these tubes, numerical values gas ffow until that axial location. Although the 
of the friction factor represented by f‘Re were com- 
pared in Table 1 with the analytical predictions 

Nusselt number is traditionally the dimensionless 
parameter employed in presenting results for internal 

reported by Soliman and Feingold [16]. In general, forced convection problems, there is a good justi- 
these comparisons for fi = 3” resulted in good agree- fication not to adopt this approach here. For engin- 
ment for all tube geometries tested. Additional results eering purposes, the most important information is 
were determined later for high temperature gas flows the heat transfer enhancement in a certain tube length 
(Pr = 0.7) through finless tubes accounting for par- due to the addition of fins with respect to a similar 
ticipating radiation. Correspondingly, for the situ- finless tube. Correspondingly, this objective may be 
ation involving combined forced convection and radi- accomplished by combining the mean bulk temper- 
ation in a plain tube, the mean bulk temperature ature distribution and equation (13). 
distribution based on the P,-approximation agrees For a standard case of forced convection in a finned 
well with the classical solutions of Pearce and Emery tube without participating radiation, Fig. 2 shows the 
[S] and Echigo et al. [9] for a wide range of radiation development of r, over the region IO-’ < Z* < 1 for 
parameters considered. To conserve space, these com- hiF = 0, 3 and 5, respectively. The mean bulk tem- 
parisons are not included in this paper, but they are perature development for any Prandtl number fluid 
discussed in detail in ref. [l I]. (either gas or non-metalic liquid) starts with t,, = 0.5 

On the other hand, for radiative transfer in axisym- for a different number of fins in the array. As NF 
metric, finite cylindrical enclosures Meng$ [20] increases from 0 to 5, th follows the expected behavior 
compared the predictions based on the P,- and P?- of monotonic increase along the developing region 
approximations with the ‘exact’ numerical results. down to the asymptotic region, wherein thermal satu- 

Heat transfer enhancement in internally finned tubes I865 
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FIG. 

0.m 0.010 0.100 1.m 

Z+ 
2. Mean bulk temperature distribution for 7 = 0 and 

N = 0. 

o.c-3, 

N =-I. 

0.010 

z + o”ca “cm 
FIG. 3. Mean bulk temperature distribution for t = 1 and 

FIG. 4. Mean bulk temperature distribution for T = 1 and 
N= 5. 

FIG. 5. Mean bulk temperature distribution for 5 = 1 and 
N = IO. 

ration occurs. In this figure, all finned tubes appear 
to have approximately the same axial temperature 
gradient in a large portion of the thermal entrance 
region. 

Figures 3-7 have been prepared to show the influ- 
ence of participating thermal radiation in a gas flow 

FIG. 6. Mean bulk temperature distribution for T = 0.05 and 
N = 5. 

N = 5. 
FIG. 7. Mean bulk temperature distribution for T = 5 and 

(Pr = 0.7) through a finned tube, being represented 

by various values of the optical thickness z and the 
radiation-conduction parameter N. At this juncture. 

note should be taken that although Pr = 0.7, the flow 
rate described by the Reynolds number Re appears 

as an indirect parameter in the dimensionless axial 
distance Z+. 

The major issue to be examined in Figs. 3-5 is the 

response of the mean bulk temperature development 
to changes in N maintaining a fixed value of r, for 
instance 5 = I. First, considering Fig. 3 where N = I 

it is seen that the bulk temperatures increase rather 
slowly with Z+ and that the difference between the 

curves remains approximately unaltered. As expected, 
the region of thermal saturation for each curve occurs 
at a shorter value of Z+ when compared with the 
situation without radiation (see Fig. 2). This behavior 
is due to the relatively low rates of radiative transfer 
taking place in the gas. 

Conversely, when radiation is stronger N = 5, the 
afore-mentioned trends are modified as evidenced in 
Fig. 4. Accordingly, the mean bulk temperature for 
each group of fins rises more rapidly than before. 
Furthermore, the effect of the number of fins is height- 
ened, especially for NF = 3 and 5. Here, it is also seen 
that with the addition of fins, the deviations of local 
bulk temperature AI, at each station tend to decrease 
as the number of fins increase from 0 to 3, and finally 
to 5. Correspondingly, the gas flow reaches the wall 
temperature at Z+ = 0. IO. The presentation of results 
for 7 = 1 is completed in Fig. 5. Here, temperature 
results show a pronounced sensitivity to radiation as 
N increases to 10. For this situation, heat transfer 
rates increase in the thermal entrance region causing 
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Table 2. Mean bulk temperature at 
Z+ = 0.01 for N = 5 

t 
NF 0.05 1 5 

0 0.590 0.777 0.650 
3 0.625 0.816 0.709 
5 0.654 0.836 0.755 

Table 3. Mean bulk temperature Z+ = 
0.05 for N = 5 

T 
NF 0.05 1 5 

0 0.766 1 0.893 
3 0.818 1 0.950 
5 0.855 1 0.964 

more rapid changes in tb. The trends in this figure are 
in agreement with those discussed in the foregoing 
paragraphs for Fig. 4, but certain details are worth 
noting. It is evident that as NF surpassed 5, the mean 
bulk temperature variation is moderately sensitive to 
the number of fins utilized in the array. For this par- 
ticular case, the gas flow reaches the asymptotic ther- 
mal condition at Z+ = 0.04 and conversely, the 
pressure gradient is appreciably augmented. The 
foregoing behavior may be summarized as follows. As 
N increases, the numerical results tend to approach 
an asymptotic solution which is independent of N. 
This solution seems to be invariant with the addition 
of more fins. In fact, letting N + cc in equation (2) 
gives G* = t4 = 0. This relation yields G* = constant 
from the combination of equations (3)-(5). Therefore, 
t = G* ‘I4 = constant indicates that the result is indeed 
independent of geometry. 

Results for variable r comprise the final item in 
the presentation of results specifically for values of 
7 = 0.05, 1, 5 retaining N = 5. The main feature of 
the results illustrated in Fig. 6 for r = 0.05 and N = 5 
is the evidence of low rates of heat transfer. The mean 
bulk temperatures do not differ much from those of 
Fig. 3 for r = 1 and N = 1, wherein the parameters 
appear to have a compensatory effect. 

The discussion of Figs. 6,4 and 7 will be done with 
the help of the numerical results of Tables 2 and 3. 
From a detailed inspection of these figures, it appears 
that the response oft,, to 7 is analogous to the response 
of tb to N discussed previously. Attention is first 
focused on a finned tube having a fixed dimensionless 
length of Z+ = 0.01. An examination of Table 2 
reveals a rather interesting thermal behavior. The 
maximum value oft, (or its equivalent the maximum 
heat removal QTmax) occurs in the vicinity of r = 1, 
regardless of the number of fins in the bundle. This 
phenomenon is an indication of the sweeping effect 
that 7 possesses on the gas temperature, reaching 
maximum values at approximately 7 = 1, and there- 
after dropping slightly depending on the number of 
fins considered. To complete this discussion, attention 

is now turned to a larger finned tube with a constant 
dimensionless length of Z+ = 0.05. For this case, the 
corresponding mean bulk temperature results are 
tabulated in Table 3, and here again, approximate 
maximum values of tb are associated to r = 1 for any 
number of fins in the array. In passing, it should be 
mentioned that the influence of the optical thickness 
z (7 = 1) on the maximum heat transfer has been also 
observed in ref. [ 111 for the situation of plain tubes. 

CONCLUSIONS 

The enhancing effects of longitudinal fins have been 
studied for cases of forced convection with par- 
ticipating radiation in laminar gas tube flow. Under 
the assumption of a gray gas, the two-dimensional 
radiative transfer equation has been modeled by the 
P,-approximation. The methodology proposed here 
appears to circumvent several of the computational 
difficulties encountered in convective-radiative prob- 
lems. A detailed inspection of the numerical results 
leads to the conclusion that large errors will arise 
in the analysis when radiation is neglected for high 
temperature gas flows. The conclusions may be recast 
as follows : as the radiation-conduction parameter N 
increases, the numerical results approach an asymp- 
totic solution, which seems to be invariant with the 
addition of more fins. On the contrary, the influence 
of the optical gas thickness 7 is more complicated, 
because maximum heat removal is achieved whenever 
7 = 1 approximately. Ultimately, the enhancing factor 
due to the inclusion of the radiative mechanism is 
explained in detail. 
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APPENDIX. MODELING OF RADIATIVE 
TRANSFER IN THE MEDIUM 

The radiative heat flux vector qR may be expressed in terms 
of the intensity of radiation as follows [IO] : 

div (qR) = i K,,[I,(T) -I@, .dl d(u (AlI 

where the first and second terms of the integrand represent 
the emitted and absorbed radiation in the participating 
medium, respectively. Additionally, the intensity of radiation 
may be written as 

I(P.Q) = I”(P) +u(p). l+h(p)-m+c(p) *n 642) 

where u. h, (’ are functions of position and I, m. n are the 
direction cosines in the a-direction. 

P ,-upproximution 
Upon integrating the RTE in cylindrical coordinates yields 

a partial differential equation for the first moment of inten- 
sity I,, 

where fl is the extinction coefficient of the participating 
medium. 

Alternatively, combining equations (Al) and (A2) and 

carrying out the required integration steps, results in the 
relation between the radiative heat flux and the intensity of 
radiation, i.e. 

div (qR) = ilrrK,(f,-I,,). (A4) 

Furthermore, the definition of the total irradiation G 

when combined with equation (A2) leads to the relation 

G = 4nI,,. (A6) 

In addition, owing to the hypothesis of local thermodynamic 
equilibrium, the intensity of radiation for a black body Ih 
becomes 

I, = aT%. (A7) 

By virtue of the previous definitions, the equation of 
energy conservation [21] and the equation of radiative trans- 
fer, equation (A3), may be transformed into the following 
system of partial differential equations : 

+ f ‘jig = 3flK,(G-4uT4) (A9) 

where the dependent variables are the temperature T and the 
irradiation G. Under the assumption of a non-scattering 
gray medium and introducing the dimensionless quantities 
defined in equation (6), leads to a new system controlling the 
temperature and heat flux fields. That is 

+ !m “? +4Nr(G*_r4) 
$ SO 

(AlO) 

(All) 

A detailed inspection of these equations reveals that equation 
(AIO) is a three-dimensional equation of the parabolic type, 
whereas equation (Al I) is a three-dimensional equation of 
the elliptic type. 

Next, in order to obtain an a priori estimate of the con- 
ditions for which the axial transport of thermal radiation in 
the tube can be neglected, an order of magnitude argument 
similar to that used in the boundary layer theory [21] has 
been made. In fact, such an argument was developed by 
Pearce [7] for laminar forced convection with a radiatively 
participating gas through circular plain tubes. His reasoning 
was based on the observation that the radiation flux in the 
optically thick limit will yield the most conservative criterion 
for purposes of analysis. Here, this requirement may be writ- 
ten as follows : 

6412) 

Thus, this inequality is indeed a statement that the con- 
tribution of the axial component of the radiation heat flux 
is very much smaller than that of the equivalent axial con- 
vection term. Consequently, in the optically thick limit (an 
upper bound), the radiation heat flux is simply given by 

(Al3) 

This criterion, when written in the context of the present 
problem, simply becomes 
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(A14) 

Equivalently, the radiation Peclet number defined as PeR 
= Re Pr(7jN) is restricted by the inequality 

Re Pr(7/N) >> 10 (AIs) 

which dictates the criterion for neglecting axial thermal radi- 
ation in equation (All). In this sense, condition (A15) is 
analogous to Re Pr >> 1 which according to Hennecke [22] 
provides the threshold of axial heat conduction in purely 
forced convection tube flows. 

In light of the foregoing order-of-magnitude analysis, 
equation (Al 1) in the absence of axial thermal radiation, 
becomes 

Hence, from a computational point of view, this sim- 
plification is extremely advantageous because equation 
(All) becomes a two-dimensional equation retaining its 
elliptic structure in the cross-stream direction only, and not 
in the axial direction. 

P,-approximation 
For the P,-approximation, after some elaborate manipu- 

lations of the moment-differential equations four elliptic par- 
tial differential equations are obtained. These four equations 

where the dependent variables are the I,, I, ,, I33 and I,, 
moments have to be solved simultaneously. Consequently, 
an iterative scheme must be employed to obtain the solution 
of the four moments of the intensity of radiation. Once 
the magnitude of the intensity is known, the radiative flux 
distribution may be written. 

AMELIORATION DU TRANSFERT THERMIQUE DANS LES TUBES AILETES 
INTERIEUREMENT EN TENANT COMPTE DE LA COMBINAISON DE LA 

CONVECTION ET DU RAYONNEMENT 

Rbum&Qn presente une analyse du transfert thermique simultane par convection for&e, rayonnement 
et conduction dans la region d’entree d’un tube circulaire aileti: interieurement. Les equations de quantite 
de mouvement, d’energie et de transfert radiatif sont resolues numtriquement en utilisant une mtthode de 
volume de contr6le. Dans l’idealisation de gaz gris, la contribution du rayonnement dans le milieu est 
modblisi par une mtthode differentielle approchee, l’approximation harmonique spherique du premier 
ordre (P,). Cette approche fournit une equation additionnelle aux derivees partielles du type elliptique 
dans le systtme d’tquations de convection. L’adoption de cette formulation differentielle est avantageuse 
du point de vue numerique, parce qu’elle est compatible avec le code SIMPLER. Les resultats du calcul 
pour les profils de vitesse distordus dans la section droite reduite du tube donnent les pertes par frottement 
dues a l’addition des ailettes longitudinales. L’augmentation du transfert thermique dans l’entrte thermique 
du tube ailete est represent&e par la temperature moyenne du fluide en fonction des paramttres descriptifs 

qui sont geomttriques, hydrodynamiques, thermiques et radiatifs. 

ERHBHUNG DES WARMEUBERGANGS IN INNENBERIPPTEN ROHREN UNTER 
BERtiCKSICHTIGUNG VON KONVEKTION UND STRAHLUNG 

Zusammenfassung-In dieser Arbeit wird der gekoppelte Wlrmetransport durch erzwungene Konvek- 
tion, Strahlung und Leitung im Einlaufbereich eines innenberippten kreisformigen Rohres analysiert. Die 
Erhaltungsgleichungen fur Impuls, Energie und Strahlungstransport werden mit Hilfe eines Kontroll- 
volumenansatzes numerisch gel&t. Bei einer Idealisierung als graues Gas wird der Strahlungsanteil 
mit einer Differenzenmethode, die auf einer spharischen harmonischen NPherung erster Ordnung beruht, 
berechnet. Dadurch ergibt sich eine zusatzliche elliptische Differentialgleichung im System der Differ- 
entialgleichungen. Diese Vorgehensweise bringt Vorteile bei der Simulation mit &h, da sich eine vollstin- 
diae Kompatibilitlt mit dem SIMPLER-Code ereibt. Berechnunaen des verzerrten Geschwindiekeitsorofils _ . 
imverengien Rohrquerschnitt liefern die zusltzlihen Reibungsv&uste aufgrund der Langsrippen. AuSer- 
dem wird die Erhijhung des Wlrmeiibergangskoeffizienten im thermischen Einlaufgebiet (bezogen auf die 
mittleren Temperaturen) in Abhingigkeit von den entscheidenden geometrischen, hydrodynamischen, 

thermischen und optischen Parametern dargestellt. 

MHTEHCA@HKAHHd TEI-UIOI-IEPEHOCA B TPYEAX C BHYTPEHHHM OPEBPEHHEM 
C YgETOM CMEIBAHHOR KOHBEKHHH TIPH HAJHFIMM PAj@4AHklH 

Aumor~Arm.ass3sipyeTcn conhteCTHMii TennonepeHoc 38 cse~ BbmyKr,rreHHoii KoHBeKHHH, parulamiu 
H TeHnonpoBo~oCTH no BXOJQHOM yHaCTKe wpyrnofi ~py61.1 c BH~T~~HHHM ope6peHHeM. C Hcnonb3oBa- 
HHeM MeTOjHi, OCHOBaHHOrO Ha KOHTpOnbHOM o6beMe, HHCKeHHO peHIaloTCH ypaBHeHH,, HM”y,TbC+ 
s~epr’mi H pa~amiOHHOro nepeeoca. B npH6nmKeHmi ceporo ra3a BKnaB H3nyveHr.m B cpene MoHenH- 
pyeTCn C nOMOHH.lO BH~HHHaJlBHOrO MeTO& H C HCnOnb30BaHHeM npH6nHleHHn W&?pH¶BCKHX rap- 
MOHHK nepnoro HopnCura (PI). ITpeanorceHHMfi nOHXOA lT0380JTneT nOJIyWTb J&H@epeHH&W,bHOe 
y’IJaBHeHHe 3JLIHiHTH¶eCKOrO THna, AOIIOJIHZHOIH~ B CHCTeMy ypaBHeHHfi KOHBeKHHHAsHjB#ry3HH. HClTO- 
JlB30BaHHe j’Ka3aliHOfi aH+ljH!~HHHaJlbHOfi (POpMyJHipOBKH yno6ao C TO’iKH 3ITeHHX BMHHCneHHii. PeSy- 
JIbTaTM, nOnyHeHHMe B.“B n13+0pM&ip0BaHHMX npO+Hneii CKOpO‘Teii B YMeHbmeHHOM nO”epeBHOM 
Ce’leHHB rpy6b1, lT03BOJlRH)T On~BeJIKTb ITOTepH Ha TITeHHe, BM3BaHHMe HaJHiWieM npO,JOnbHOrO ope6- 
IXJUi3l. KpoMe TOrO, BHTeHCH@HKaHHB TerHTOITepeHOCa BO BXOHHOM TelTJlOBOM )‘WCTKe Ope6peH~Oii 
Tny6M ITpenCrBneHa CpCaHefi 06ae~~oii TeMnepaTypoii repes HarWMe reoMeTp&iuecKHe, rHBpon&iHa- 

MsnreCKHe, Tennonble H pawamioHHbre napaMeTpM. 


